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Two fundamental characteristics of the low-Reynolds-number cylinder wake, which 
have involved considerable debate, are first the existence of discontinuities in the 
Strouhal-Reynolds number relationship, and secondly the phenomenon of oblique 
vortex shedding. The present paper shows that both of these characteristics of the 
wake are directly related to each other, and that both are influenced by the boundary 
conditions at the ends of the cylinder, even for spans of hundreds of diameters in 
length. It is found that a Strouhal discontinuity exists, which is not due to any of the 
previously proposed mechanisms, but instead is caused by a transition from one 
oblique shedding mode to another oblique mode. This transition is explained by a 
change from one mode where the central flow over the span matches the end 
boundary conditions to one where the central flow is unable to match the end 
conditions. In  the latter case, quasi-periodic spectra of the velocity fluctuations 
appear; these are due to the presence of spanwise cells of different frequency. During 
periods when vortices in neighbouring cells move out of phase with each other, 
‘vortex dislocations ’ are observed, and are associated with rather complex vortex 
linking between the cells. However, by manipulating the end boundary conditions, 
parallel shedding can be induced, which then results in a completely continuous 
Strouhal curve. It is also universal in the sense that the oblique-shedding Strouhal 
data (SO) can be collapsed onto the parallel-shedding Strouhal curve (So) by the 
transformation, So = Se/COs0, where 8 is the angle of oblique shedding. Close 
agreement between measurements in two distinctly different facilities confirms the 
continuous and universal nature of this Strouhal curve. It is believed that the case 
of parallel shedding represents truly two-dimensional shedding, and a comparison of 
Strouhal frequency data is made with several two-dimensional numerical simu- 
lations, yielding a large disparity which is not clearly understood. The oblique and 
parallel modes of vortex shedding are both intrinsic to the flow over a cylinder, and 
are simply solutions to different problems, because the boundary conditions are 
different in each case. 

1. Introduction 
The problem of the wake formation behind bluff bodies has received a great deal 

of attention, both from an experimental standpoint and more recently from a 
theoretical/numerical standpoint. Nevertheless, even at  low Reynolds numbers 
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when the shed vortices remain laminar, there are some rather basic questions that arc 
not understood. 

Since the first extensive measurements of vortex shedding frequencies by Roshko 
(1954), there has been remarkably little agreement between the many published 
curvcs of Strouhal number (8) versus Reynolds numbers (Re) for the laminar 
shedding regime (between Reynolds numbers of 49 to 178 in the present study). 
Indeed published results have been found to differ by almost 20%. It is clear that, 
even though the measurement of the wake frequencies is a simple matter, the 
frequency itself is highly sensitive to the experimental arrangement and, as will be 
found here, it is particularly sensitive to three-dimensional effects. A further 
characteristic of the low-Reynolds-number flow around cylinders, which is not well 
understood, is the presence of oblique vortex shedding, whereby the axes of the 
vortices are shed a t  some angle to the cylinder axis. Although this oblique shedding 
phenomenon has been noted by several authors, no investigation has been carried out 
to understand its origin. I n  the present paper, both of the above features of the flow 
around a circular cylinder are investigated. 

The measurement of vortex shedding frequency has been the subject of 
considerable debate since the observation by Tritton (1959) that his Strouhal curve 
(i.e. his plot of Strouhal number versus Reynolds number) was discontinuous. 
He found two Strouhal curves, one of them corresponding to a ‘high-speed’ mode 
above Re = 100, with a jump to a curve corresponding to a ‘low-speed’ mode below 
Re = 100. Tritton suggested that this ‘Strouhal discontinuity’ was caused by a 
transition from an instability originating in the wake to an instability originating in 
the immediate vicinity of the cylinder, as the Reynolds numbers are increased. His 
discovery of a discontinuity in the Strouhal curve has led to  a number of different 
explanations since that time, and to  much discussion over whether the discontinuity 
is an intrinsic, ‘ fluid-mechanic ’ phenomenon, irrespective of the experimental set-up. 

A further explanation was put forward by Gaster (1969). He observed irregular 
modulations of the velocity signal in the wakes of slender cones, which were caused 
by the presence of spanwise cells of different frequency. Based on the similarity with 
Tritton’s velocity signals, Gaster suggested that Tritton’s breakdown of regular 
shedding could possibly be caused by thc cxistence of some non-uniformity of the 
flow. Tritton (1971) then repeated his experiments in a different wind tunnel and 
again observed a Strouhal discontinuity (in this case near Re z 110). Still further 
experiments by Gaster (1971) provided stronger support for his original suggestion 
that the Strouhal discontinuity was caused by free-stream non-uniformities. By 
forcing the flow to be non-uniform across the cylinder span, he induced spanwise cells 
of different frequency to occur. Measurements of shedding frequency versus tunnel 
speed at a single point demonstrated a discontinuity under these conditions, because 
the frequency cells were found to move along the span as the speed was varied. 
However, the discontinuity was made to disappear when small end-plate disks were 
placed 70 diameters apart along the span, and it was suggested that these endplates 
limited the spanwise movement of the frequency cells. In  recent support of Gaster’s 
suggestions, Mathis, Provansal & Boyer (1984) also proposed that the Strouhal 
discontinuity is caused by flow non-uniformity. 

Berger & Wille (1972), on the other hand, believed that two intrinsic modes of 
shedding exist, as put forward by Tritton, and that the choice of which mode occurs 
a t  a given Reynolds number could be dictated by the level of turbulence in the free 
stream. Further discontinuities were observed by Kohan & Schwarz (1973) and 
Friehe (1980), who found Strouhal discontinuities within the range of Re from 70 to 
110 for several different cylinders. These investigations confirmed that a Strouhal 
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discontinuity (much like Tritton’s result) can exist in other experimental set-ups, 
although its cause remained a question. 

An alternative view was taken by Gerrard (1978) who suggested that his Strouhal 
discontinuity a t  Re x 100 was in some way related to the end of a regime of Reynolds 
number in which diffusion of vorticity plays a primary role in the vortex shedding. 

More recently, Sreenivasan (1985) interpreted his several Strouhal discontinuities 
as being involved in the ‘route to chaos ’ in the cylinder wake. Upon investigating 
velocity spectra as Reynolds numbers were increased in the laminar regime, he found 
narrow ranges of Re in which ‘chaos’ was observed, and these were sandwiched 
between regions of ‘order’, (with both of these states characterised by the velocity 
spectra). These were interpreted as the initial stages in the transition to  turbulence. 
These results are further briefly discussed, in the light of the present work, in $7. 

Subsequently, Van Atta & Gharib (1987) showed convincingly how some 
discontinuities, which might be observed in a plot of Strouhal number versus 
Reynolds number, can be related to vibrations of the cylinder itself. To show this 
clearly they monitored cylinder vibrations using a photodetector, and also 
demonstrated, by damping the cylinder supports, that several Strouhal dis- 
continuities (which occurred a t  multiples of a fundamental frequency) could be 
smoothed out. They suggested that ‘if there were absolutely no vibration, a 
Strouhal-Reynolds number plot would have absolutely no discontinuities ’. A 
particularly significant aspect of their work was this suggestion that indeed there 
might exist a continuous S-Re relationship. 

In  a further paper, Van Atta, Gharib & Hammache (1988) investigated the wake 
of a vibrating wire, and found that the wake velocity spectra were influenced by the 
interaction between the vibrating wire frequency (near the antinodes) and the 
natural shedding frequency (near the nodes). This interaction was found to cause 
both quasi-periodic spectra, and also spectra with a ‘chaotic ’ appearance, dependent 
on the spanwise position, and these results demonstrate further the importance of 
body vibration in determining the character of the wake. 

Following the result of Van Atta & Gharib (1987), some two-dimensional 
numerical simulations by Karniadakis & Triantafyllou (1989) also have relevance to 
the present question. They demonstrated that their Strouhal number varies 
continuously with Reynolds number over a range of Re from 40 to 250, and they 
found no evidence of chaotic behaviour of the velocity fluctuations in the wake (as 
had been described by Sreenivasan). I n  this respect, it was supposed that their 
simulations supported the conclusions of Van Atta & Gharib that the asymptotic 
state in unforced laminar wakes (for example, the cylinder not vibrating) is periodic. 
Their conclusion seems reasonable provided that the flow is, in fact, two-dimensional. 
However, in an experiment a cylinder must be of finite length and therefore will 
always encounter certain end conditions. As will be seen later, it is for this reason 
that the flow can be three-dimensional even in a uniform free stream, and it may then 
be possible for the laminar wake fluctuations to be quasi-periodic, without the 
presence of external forcing. 

Out of the several explanations for the existence of discontinuities, the suggestions 
that flow non-uniformity (or shear) and flow-induced vibration can cause jumps in 
the frequency curve are consistent with the results of several other studies. For 
example, the work of Maul1 & Young (1973) demonstrated the presence of spanwise 
cells of different frequency when a cylinder is placed in a shear flow. Some spanwise 
movement of these cell boundaries, as the overall flow speed is varied, would result 
in discontinuous changes in measured frequency a t  a point. Also, it is well established 
that cylinder vibrations can ‘lock-in ’ (synchronize) with the shedding frequency (to 
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one or more of its natural frequencies) and cause jump changes in the shedding 
frequency as the flow speed is varied, (see for example the review by Bearman 1984). 
However, an important question that remains is whether a discontinuity in the 
frequency curve can still occur even if cylinder vibrations or flow non-uniformity are 
not involved. This is one of the central questions in the present paper. 

A further feature of laminar vortex shedding that is relevant to the question of 
Strouhal discontinuities is the observation that vortices can shed at oblique angles 
to the cylinder. No systematic measurements of oblique shedding angles have 
previously been made, although typical angles of 10’ to 20” have been quoted. From 
a theoretical standpoint, linear stability analysis of wake-type profiles (with inviscid 
parallel flow) can be used to  show that two-dimensional disturbances have a greater 
temporal growth rate than oblique disturbances. This can be demonstrated in a 
simple manner using Squire’s transformation (Squire 1933). Also, a recent study by 
Monkewitz (1988) of the ‘absolute’ instability of a limited number of wake-type 
profiles has shown, in all the investigated cases, that the two-dimensional 
disturbances were the most unstable, i.e. that we should expect to see two- 
dimensional or parallel shedding, ‘yielding no clue as to why oblique vortex shedding 
is often observed ’. 

In the case of experiment, there are some conflicting results for the oblique angles 
at  which vortices are shed. The observation of parallel shedding, in a towing tank, 
by Hama (1957) contrasts with observations of oblique shedding, made in a wind 
tunnel, by Berger (1964). Berger & Wille (1972) later suggested that the low 
turbulence level in a towing tank enables parallel shedding to occur, whereas the 
higher turbulence levels expected in a wind tunnel somehow causes the oblique 
shedding. They also pointed out that  end effects could be important. 

With relevance to this question, a detailed investigation by Ramberg (1983) on the 
wake of a yawed cylinder (a cylinder whose axis is not perpendicular to the free 
stream), indicated that the flow was sensitive to the end conditions. He showed that 
changing the angle of the endplates of his yawed cylinder could influence the 
shedding angle and base pressure near the ends. He further observed an inter- 
dependence between the shedding frequency and the shedding angle. The results 
to be shown in the present study are in accordance with both of the above 
conclusions. 

It was found in further studies by Gerich & Eckelmann (1983) and Gerich (1986), 
using a wind tunnel, that cells of low frequency exist near the ends of a cylinder, 
extending over spans of around 10 diameters. For large length-to-diameter ratios 
(LID),  the flow in the central region of the span (outside of the end cells) was assumed 
to be ‘unaffected’ by the ends, but when L I D  was reduced to around 30, the end cells 
merged, causing a single low frequency of shedding over the whole span. An earlier 
investigation in a towing tank, by Slaouti & Gerrard (1981), showed that the wake 
structure could be influenced by the end conditions, and they concluded that 
slantwise (oblique) shedding was only observed when conditions at one end were 
more ‘dominant ’ than the other. However, their results were from observations 
using a cylinder with L / D z  25-30, which is within the range where Gerich & 
Eckelmann showed that the end cells cover the whole span. The question therefore 
remains as to whether the flow outside of the end cells, for larger LID, is indeed 
‘ unaffected ’ by the end conditions. 

It is clear that there are differences in the measurements of frequency and 
discontinuities between one experiment and another, and it is also evident that there 
are differences in the shedding angles between experiments. It might then be 
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suggested that these characteristics of the flow are related to each other. The present 
paper will show that there is a direct relation between the frequency measurements 
and the phenomenon of oblique vortex shedding, and also that both are influenced 
by the conditions a t  the ends of the cylinder. One of the fundamental results of the 
present work is that, even for large spans, the end boundary conditions (or end cells) 
are able to affect the flow over the whole span, even outside of the end cells. It is also 
found that the presence of oblique shedding does not require a difference in the two 
end conditions. 

The present paper originated from some other .work for which a simple and rapid 
measurement of the Strouhal frequencies in the laminar regime was anticipated. It 
was very soon found that the flow around the cylinder was sensitive to a number of 
features of the experimental arrangement. A great deal of care was taken to dampen 
(and monitor) any cylinder vibration, and to check the flow uniformity and 
turbulence level of a small wind tunnel in which the cylinder was placed. Despite 
these efforts, it became apparent that a Strouhal discontinuity near Re = 64 
remained. Not only was this discontinuity repeatable on several occasions (even after 
an earthquake had broken the original cylinder and hot wire), but three cylinders of 
different diameters all produced a similar discontinuity at the same Reynolds 
number. It was because of these observations that the present study was carried out. 

In a recent letter (Williamson 1988a), some preliminary results from the present 
study were outlined. In  particular, a link between the Strouhal discontinuity and a 
transition between two oblique vortex shedding modes was made. It was further 
shown that, by manipulating the end conditions to cause parallel shedding, a single 
continuous Strouhal curve could be found. In  the present paper, the preliminary 
results mentioned above are included with many further results in detail, to present 
a comprehensive picture of the laminar vortex shedding modes behind a cylinder a t  
low Reynolds numbers. 

During the course of the present research, it was learned that H. Eisenlohr and 
H. Eckelmann (1988, private communication) were undertaking a similar line of 
research, which has since appeared (Eisenlohr & Eckelman 1989). They recognized, 
as found in the present paper, that the phenomenon of oblique shedding was 
influenced by the end conditions for long cylinders. They also showed that parallel 
shedding could be induced by a suitable change of end conditions. Their results are 
referred to  further in this paper, and i t  is found that there is substantial agreement 
between their results and some of the present work (and also with Williamson 
1 9 8 8 ~ ) .  

In $ 3.1 evidence is presented to show that the Strouhal discontinuity is not caused 
by cylinder vibrations. Further investigation shows that the discontinuity is not due 
to any of the many previously proposed mechanisms. Instead, measurements and 
observations discussed in $3.2 show the cause of the discontinuity as being a 
transition from one mode of oblique vortex shedding to another oblique mode. One 
of the modes (at the lower Reynolds numbers) corresponds with the presence of 
spanwise cells of different frequency. These cells should not be confused with the 
small low-frequency cells found close to the ends of the cylinder that were 
investigated by Gerich & Eckelmann, and which were also found in the present study 
a t  all values of the Reynolds number where vortex shedding occurred. The physical 
mechanisms for the oblique modes of shedding, and also for an induced parallel 
mode, are discussed in $3.3. Each mode is caused by a ‘matching’ of the flow over 
the whole span with the end boundary conditions, and it is by adjusting the end 
conditions that parallel shedding can be induced to occur. In $4 a new parallel- 
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shedding Strouhal curve is defined which is completely continuous. It is also possible 
to transform the oblique-shedding Strouhal curves onto the continuous parallel- 
shedding curve, using the measured oblique angles of shedding. In $ 5  it is shown that 
Tritton’s Strouhal discontinuity is consistent with the one found here, and also an 
explanation for the cause of the discontinuity is put forward. It is in essence, a 
breakdown in the ‘matching’ between the end boundary conditions and the flow over 
the rest of the span. In  the case of the oblique vortex shedding, it is found that 
‘ vortex dislocations ’ occur between the spanwise cells (at a beating frequency) when 
the vortices of each cell are periodically out of phase, and these are described in $6. 
A discussion and conclusions are given in $37 and 8 respectively. 

2. Experimental details 
Measurements of velocity fluctuations were made with a miniature hot wire 

situated in the wake of three different cylinders (of diameters 0.051,0.061,0.104 cm.) 
in a 6 in. diameter circular test section of an open-jet wind tunnel. (Downstream of 
the 2 f t  long test section, the air is expelled into the atmosphere.) The.test cylinders 
(actually wires) were placed across a diameter a t  a position about 16 in. upstream of 
the end of the test section. The turbulence level was close to 0.1%, with flow 
uniformity better than 0.3 %. A good deal of effort was taken to  isolabe the cylinders 
from the tunnel, and to damp out any cylinder vibrations. Each cylinder was passed 
through small holes in the test section, and clamped between felt pads to a tcnaioning 
structure outside of, and mechanically separate from, the test section. In addition, 
each cylinder was encased in fine-grained polystyrene foam blocks outside the test 
section (but again not in contact with the test section). Also, the platform, which held 
the wind t,unnel fan, was isolated from any mechanical contact with the settling 
chamber and test section. In order to monitor any possible cylinder vibration an 
inexpensive photodiode arrangement was set up, which had a high sensitivity of 
0.3 mV output per 

The oblique angles of vortex shedding (8) were measured with use of two hot, wires, 
one of which could be traversed the whole span of the wake, while the other could 
be traversed upstream-downstream. In order to measure 8, both wires were 
displaced at measured distances from each other, whilst keeping the phase relation 
between the two signals constant (by retaining a particular ‘Lissajou’ shape on a 
Nicolet oscilloscope), and the oblique angle was then deduced from simple geometry. 
Measurements of frequency and oblique angle were made from 10 diameters (and 
more) downstream of the cylinder axis. 

The outputs from the hot wires and the ‘vibration detector’ were fed into a HP- 
358214 two-channel spectrum analyser. Besides being used to  measure the St,rouhal 
frequencies, the analyser could compare the signals from the two hot wires when they 
were placed a t  different spanwise positions. At other times, the spectrum of the 
vibration detector could be compared with that’ of the wake velocity fluctuations. 

Flow visualization and further frequency measurements were conducted in our new 
X-Y Towing Tank a t  the Graduate Aeronautical Laboratories. This towing tank 
operates much like a computer X-Y plotter, and can impart arbitrary unsteady 
trajectories t o  bodies which are towed within the fluid in the glass tank (of length 
16 ft. and cross-section 3.5 ft. by 3.5 ft,.). Cylinders of diameter 0.328 cm and 0.657 cm 
were towed horizontally along the length of the tank, and the shed vorticity was 
visualized using laser light which excited fluorescein dye washed off the surface of the 
cylinders. Frequency measurements were undertaken with the use of a video system 
t)hat had an incorporated timer unit. 

in. displacement of the cylinder. 
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3. Experimental results 
3.1 Proof that the present Strouhal discontinuity is  not caused by cylinder vibrations 

In the present measurements i t  was clear that, for the required accuracy, reliable 
temperature and pressure readings in the laboratory were necessary, but also the 
Pitot tube (used to measure free-stream velocity) had to be checked often. On top of 
such basic considerations it was found that two features of the experimental set-up 
needed specific attention. 

First, it was found that without the use of endplates to ‘shield ’ the span of the 
cylinder from the boundary layer along the test-section walls, the Strouhal frequency 
measurements were somewhat unrepeatable, and under some conditions there 
appeared spectra with peaks at more than one frequency. It wits felt that this could 
possibly have been related to spanwise cells of different frequency (similar to those 
described by Gaster 1971) that were somehow influenced by the end conditions of the 
wall boundary layers. Therefore, endplates (circular disks) were placed a t  two points 
along the cylinder span. Length-to-diameter ratios ( L I D )  of between 90 and 240 were 
generally used, while disk diameter to cylinder diameter ratios of between 10 to 30 
were used. The use of endplates dramatically improved the repeatability of the 
Strouhal measurements, and served as an early demonstration of the importance of 
the end conditions on the flow across even large spans. 

Secondly, it is clear that  there exists the possibility that flow-induced cylinder 
vibration could interfere with the wake formation and the frequency of vortex 
shedding. To eliminate such interference, pains were taken to dampen the clamped 
ends of the cylinders, and also to monitor possible vibration using the vibration 
detector that  was described earlier. With such care over the set-up i t  was possible to 
measure frequencies with high repeatability ; the resulting data are shown in figure 
1 (a) .  It should first be pointed out that the Strouhal curve has a discontinuity a t  
Re FZ 180, which has been shown (Williamson 1988b) to be caused by a transition to  
three-dimensionality in the wake, involving the appearance of vortex loops and also 
streamwise vortices. This marks the end of the laminar regime, and the beginning of 
a transition to what Roshko (1954) described as the ‘irregular’ regime starting at  
around Re x 300. 

The Strouhal discontinuity that is of central relevance in the present study can be 
seen in figure 1 ( a )  at Re = 64, where the curve denoted by fL becomes overlapped by 
another curve denoted f u ,  as Re is reduced. Note that (in the region of overlap), 
subscript L refers to the lower frequency curve, and subscript U refers to the upper 
curve. (The curve of frequencies f, are those found in a small cell of lower frequency 
only measured near the endplates.) Having found the discontinuity at Re = 64 for 
one cylinder, one might suspect that cylinder vibrations are involved. However, if 
this were the case, one would expect other similar discontinuities to show up at  other 
values of Re (corresponding to harmonics of the cylinder frequency), which does not 
occur. Also, two other cylinders of different diameter both produce a discontinuity 
a t  the same Re = 64 as the original cylinder, and this suggests that cylinder 
vibrations are not involved. Allied to this fact, the Strouhal data close to the 
discontinuity (and also away from the discontinuity) were unaffected by changes in 
cylinder tension, which would clearly not be the case if cylinder vibrations were 
involved. 

As a further demonstration that cylinder vibrations do not cause the discontinuity, 
it was decided to study simultaneously the wake and vibration spectra as Re was 
decreased through the discontinuity at Re = 64. The fundamental and the first 
harmonic of the cylinder natural frequency were arranged so that they straddled, 
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FIGURE 1 .  Strouhal numbers and oblique shedding angles as a function of Reynolds number. (a) 
Strouhal numbers S versus Reynolds numbers Re for three different cylinders: 0, diameter = 
0.104 cm (LID = 140) ; 0,  diameter = 0.061 om (LID = 200) ; +, diameter = 0.051 cm (LID = 
240). ( b )  Absolute value of oblique shedding angle (191 in degrees, versus Re. 0 is for -0, is for 
+ O .  Measurements are from the 0.104 cm cylinder. LID = 123, L = cylinder length, D = cylinder 
diameter. 
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FIGURE 2. Comparison of vibration spectra and wake velocity spectra. The dashed vertical lines are 
the natural frequency and first harmonic of the (damped) cylinder. Note the dramatic change in 
wake spectrum as Re is reduced, which is not reflected by such a change in the vibration spectrum. 
(a) Vibration spectra without flow; (6) spectra above discontinuity, Re = 70, S = 0.1406, f = 140.4 
Hz; (c )  spectra below discontinuity, Re = 62.3, S = 0.1317, f =  117.2 Hz. 

and were far from, the vortex frequency corresponding to the discontinuity. (The 
natural frequency was determined by plucking the damped cylinder and noting the 
broad peak of the spectrum.) These natural frequencies (at 84 Hz and 168 Hz) are 
shown by the vertical dashed lines in figure 2. In  figure 2 ( a )  the vibration spectrum 
is shown without the tunnel motor on (at the top). With the tunnel motor running 
but without any flow in the tunnel, small peaks in the vibration spectrum (the lower 
spectrum in a)  can be seen, and their origin was found to be attributable to natural 
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frequencies of the structure holding the vibration monitor. The main result of figure 
2 is found in parts (b )  and (c) .  Hcre the wake and vibration spectra are shown a t  
He = 70.1,  above the discontinuity (when the shedding frequency corresponds with 
the curve f L  in figure l a ) ,  and also at Re = 62.3, below the discontinuity (when the 
shedding frequency of the central span corresponds with the curve f,). Despite 
obvious changes in the form of the wake spectra abovc and below the discontinuity 
between figures 2 ( b )  and 2 (c),  the vibration spectrum remains essentially unaltered 
and similar to that measured when there was no flow in the tunnel a t  all. (An 
explanation of why the wake spectrum changes from single-peaked to  multiple- 
peaked will be given in $3.2 below.) Thc above observations, combined with the fact 
that the cylinder natural frequencies are obviously not involved. clearly shows that 
flow-induced cylinder vibrations are not causing the Strouhal discontinuity. 

Given that the Strouhal discontinuity is not caused by flow-induced vibration, it 
seemed likely that some three-dimensional aspect of the flow was responsible for its 
appearance. For this reason, two hot wires were then used to study the flow over the 
whole span, and to measure oblique angles of shedding, and these results are 
described below. 

3.2 Measurements and observations of oblique vortex shedding modes 

In this section it will be shown that the Strouhal discontinuity a t  Rr = 64 is caused 
by a change from one mode of oblique vortex shedding to another oblique mode, and 
is not due either to  non-uniform flow conditions or, as was already found, to fiow- 
induced vibrations. 

In figure 1 ,  we can see immediately that the Strouhal discontinuity in figure 1 (a )  
is mirrored by a discontinuous drop in the oblique shedding angle in figure 1 ( b ) .  As 
Re is decreased, the oblique angle 0 increases, until there is some form of ‘ breakdown ’ 
to a different mode of shedding. The key to this breakdown was found by traversing 
a hot wire across the complete span of the cylinder wake. For Re above the 
discontinuity, a single frequency f L  was found across the whole span as shown 
schematically in figure 3 ( a ) ,  with the exception of small regions near the ends of the 
cylinder where the lower-frequency cclls (at  frequency fe in figure 1 )  are found. In this 
range of Re, the vortex configuration takes on the appearance of a ‘ chcvron ’-shaped 
pattern. However, a t  Re below the discontinuity, a central cell of frequency fu 
(corresponding with the upper Strouhal curve) appears, which is ‘sandwiched ’ 
between two cells of the lower frequency fL (from the lower Strouhal curve). This is 
depicted in the schematic of figure 3 (b ) .  Owing to the spanwise cells, both the upper 
frequencyfu and the lower frequency fL can be detected simultaneously with a hot 
wire at a typical point in the wake of the cylinder. The above obscrvations 
correspond in figure l ( a )  with an overlap of curves f L  and fu  that extends from 
Re = 64 down to Ke o 53. We can conclude from the above that the Strouhal 
discontinuity is the result of some change in the mode by which oblique vortices are 
shed. 

A further investigation was made to study the effect of the cylinder length/ 
diameter ratio, or LID, on the influence that the end cells of low frequency have 
on the flow over the rest of the span. The details of this study are outlined in the 
Appendix. In this case, the Reynolds number was fixed at  a value of 101.0,  above the 
discontinuity. It is concluded that the end conditions directly influence an end-cell 
region of the order of 10 diameters in spanlength. For LID < 28, the end cells merge 
together, covering the whole span and causing the vortices to shed at  only one 
frequency f,. (This is consistent with the results of Gerich 1986.) The flow over the 
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F I G ~ R E  3. The two oblique vortex shedding modes. (a) ‘Periodic’ oblique shedding mode (for 
Re = 644178). with a chevron-shaped oblique vortex pattern. Aside from the endplate cells at 
frequency je,  there is a single cell of frequency fL over the whole span, with periodic wake spectra. 
( b )  ‘Quasi-periodic’ oblique mode (Re < 64). A central cell of higher frequency f,, (and lower 
shedding angle) appears, pushing to each side the cell of frequencyf,. This mode has quasi-periodic 
wake spectra. 
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FIGURE 4. Wake velocity spectra. In (a )  Re = 120.2, AS’ = 0.1701, D = 0.061 cm., LID = 200. In ( b ) ,  
for the sharp spectrum (laminar vortex shedding) Re = 172.8, S = 0.1840, f =  1305 Hz;  for the 
broad spectrum (vortex shedding involving three-dimensional transition) : Re = 172.8, S = 0.1802, 
f =  1277 Hz. 

whole span is then directly influenced by the end conditions. For LID > 28, however, 
the central cell of frequency f L  appears in the central region of the span, and it is 
found that this frequency is unaffected by a variation of LID. Velocity fluctuations 
at  the end-cell frequency f, can still be felt by a centrally placed hot wire for L I D  up 
to about 45, thereafter the spectra remain unchanged as LID is further increased. 
This suggests that, for LID > 45, the vortex shedding in the central regions of the 
span at  frequency fL is unaffected by the direct influence from the end conditions. 

In order to characterize the oblique modes that were shown in figure 3 in more 
detail, we shall see how the character of the spectrum changes at  different points 
along the Strouhal curve (i.e. at  different Re), and also at  different spanwise positions 
for a given Re. In the case of the shedding mode at Re above the discontinuity, (i.e. 
for Re between 64 and 178), the spectra are periodic, corresponding to  a single 
shedding frequency fL, as shown typically in figure 4 (a )  for Re = 120.2. In figure 4 ( b )  
a similarly sharp spectrum at Re = 172.8 is shown, along with another spectrum with 
a much broader peak at  a lower frequency, but at  the same Re. This corresponds with 
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a hysteretic transition to  three-dimensionality in the wake, and is discussed in 
Williamson (1988b). Of primary interest in the present problem is the way in which 
the spectrum dramatically changes its form as Re is reduced below the discontinuity, 
and also how the spectra vary along the cylinder span. 

At a Reynolds number of 59.7 (which is below the discontinuity), in figure 5 ,  the 
spectra measured a t  different distances away from the endplate are shown on the left, 
with corresponding time traces of the velocity fluctuations on the right. In  (a), when 
the hot wire is placed 36 diameters from the endplate (x/D = 36) ,  the spectrum shows 
multiple peaks, although each one of them can be attributed to combinations of the 
two frequencies fu and fL. This is typical of the quasi-periodic spectra that are 
associated with the spanwise cells of different frequency. As we reduce z / D  in (b )  and 
( c ) ,  so the energy a t  the frequency fu is reduced while the frequency f L  takes over. In  
this case we are moving from a cell of frequency fu into a cell of frequency fL. The 
time trace in ( b )  shows a low-frequency modulation corresponding with the beat 
frequency (fu-fL). The quasi-periodic spectrum in ( c )  is particularly interesting as it 
shows three incommensurate frequencies fu ,  fL, f , ,  however the spectrum remains 
‘ordered ’ in that all the peaks are related to combinations of these three frequencies. 
In this spectrum most of the energy is a t  the cell frequency fL ,  with some effect being 
‘felt’ from the frequency of the cell in the central span fu  on the one side, and from 
the end-cell frequency f ,  on the other side. (Again, note the low-frequency 
modulations in the time trace ( c )  corresponding with the two different beat 
frequencies.) Moving closer to the endplate a t  around x/D = 10 in (d ) ,  the energy a t  
the frequency f, becomes comparable with the energy for frequency f L ,  and the time 
trace shows a modulation at the beat frequency (fL-f,). Still further towards the 
endplate, a t  z / D  = 5.2 in ( e ) ,  most of the energy is now a t  the frequency f,, as shown 
in the spectrum and the time trace, and we are now within the low-frequency cell 
adjacent to the endplate. The end cells of low frequency f ,  extend inwards around 
1OD from each end, while the cells of frequency fL extend inward about 250. The 
picture above of how the spectra and time traces vary with spanwise location is 
similar for each end of the cylinder span, and led to the schematic diagram of the 
different frequency cells that was shown in figure 3(b ) .  

It should be noted that this lower frequency f ,  is not the result of an interaction 
of the cylinder wake near the ends of the span with the wake behind the endplate 
disks. This was proven by changing the dimensions of the disk and thereby its own 
wake, with the addition of strips of putty, while having no effect on the frequency 
or velocity spectra in the end-cell region near the cylinder. 

Visualization of these different modes of oblique vortex shedding, found for Re 
above the below the discontinuity, are shown in figure 6 taken from the X-Y towing 
tank. An example of the mode of shedding that is found for Re above the Strouhal 
discontinuity is shown in figure 6 ( a ) .  In  this figure, the flow is upwards past the 
horizontal cylinder which lies a t  the bottom of the photograph. Here, the oblique 
vortices are reasonably straight over one half of the span a t  a positive shedding angle 
+ 0, and again straight over the other half of the span but now with a negative angle 
-8,  so that a bend occurs in the middle of the span, giving the ‘chevron’-shaped 
pattern of oblique vortices. At the ends can be seen vortex structures which occur at 
the beat frequency (fL - f , )  between the central cell of frequency fL and the endplate 
cell of frequency f,. The changeover of shedding modes in the case of the towing tank 
was found at a value of Re close to 75, slightly higher than in the tunnel. 

I n  figure 6 ( b ) ,  the mode of shedding below the discontinuity (at Re = 60) is one 
where the central cell frequency fu is sandwiched between cells of frequency fL. In 
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FIGURE 6. Visualization of the different modes of laminar vortex shedding. Flow is upwards. ( a )  
The periodic oblique shedding mode corresponding with the chevron-shaped pattern of oblique 
vortices, a t  Re = 85 (Re above the discontinuity). LID = 140 (6) Quasi-periodic oblique shedding 
mode, with spanwise cells of different shedding frequency, a t  Re = 60 (Re below discontinuity). 
LID = 70. 



594 C .  H .  K .  Williamson 

this case, the cell boundaries lie very roughly (in the mean) along vertical lines, like 
the sketch in figure 3 ( b ) .  Along such cell boundaries are found ‘vortex dislocations’, 
which occur a t  the beat frequency (fu -fL), and are the result of vortices in one cell 
moving out of phase with vortices in a neighbouring cell of different frequency. 
(These are described in detail in $6.) One of these vortex dislocations can be seen in 
the right half of figure 6 ( b ) ,  developing in the near wake of the cylinder. An earlier 
dislocation that occurred on the left can be seen downstream and almost out of view. 
(At these low Reynolds numbers, the end cells of lower frequencyf, are more difficult 
to observe, as the strength of their fluctuations in this region becomes relatively weak 
compared with those over the rest of the span. This can also be seen from the time 
traces of figure 5 . )  The wake over the central span in figure 6 ( a )  is a steady 
configuration, unlike that in (b) ,  and gives the periodic spectra shown typically in 
figure 4, rather than the quasi-periodic spectra shown typically in figure 5. 

It may be thought that  the existence of flow non-uniformity could cause the 
breakdown from one oblique shedding mode to the other. This is a distinct possibility 
if a large degree of non-uniformity were present, although in the present case the test- 
section uniformity was better than 0.3% over a range of tunnel speeds. Further 
evidence to show that non-uniformities are not involved here is found in the plot of 
oblique shedding angles 0 versus Re in figure 1 (b ) .  Here both +8 and -8 could be 
measured at the same Re whereas we would expect only one sign of t9 if non- 
uniformity were the cause. The final confirmation comes from the visualization in 
figure 6 where for example in (a ) ,  a positive and negative oblique angle occurs on each 
half of the span, i.e. the ‘chevron’-shaped pattern is symmetric with respect to the 
centre span, and is not due to  some shear in the incident flow. In  the latter example, 
the flow incident on the cylinder is likely to  be particularly uniform, given that the 
cylinder is towed through the quiescent fluid (unlike the situation in the wind 
tunnel). Also, the transition of oblique shedding modes occurs in the towing tank just 
as it does in the wind tunnel (although at a slightly higher Re). This fact coupled with 
the symmetry about the centre span of the shedding configuration indicates that 
oblique shedding and the breakdown from one mode to another is not, in this case, 
caused by flow non-uniformities. 

We can now conclude that the Strouhal discontinuity is caused by a transition 
from one mode of oblique shedding to  another, and is not caused by either cylinder 
vibration or by flow non-uniformites. One might question what causes the transition 
of shedding modes Z The answer lies in the ‘matching’ between the end boundary 
conditions with the flow over the rest of the span, and these ideas are expanded later 
in $5. I n  the following section, the physical mechanism by which the ends impose a 
certain oblique angle on the whole flow is explored. 

3.3 Physical mechanism of oblique and parallel shedding 
There are a number of advantages to  visualizing the wake in the towing tank, one of 
which is the fact that the cylinder is started impulsively. In  this way, one can see how 
the vortex shedding develops as the cylinder travels away from its starting position. 
One rather basic observation is that  the ‘ asymptotic ’ form of the wake (which, in the 
present case, is oblique shedding) takes some time to  evolve. Initially, vortices are 
shed parallel to the cylinder, and it takes time for the end boundary condition which 
imposes a certain oblique angle on the flow, to make itself felt across the whole span. 
An example of an initial and final vortex configuration from a single run can be seen 
in figure 7. I n  (a),  the wake vortices are still being shed parallel to  the cylinder over 
most of the span after 100 diameters of travel, although an oblique angle of shedding 
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FIGURE 7 .  Development of an oblique shedding mode in (b ) ,  from an initially parallel shedding 
configuration in (a) .  Flow is upwards. In ( a )  the cylinder has travelled 100 diameters (x/D = 100). 
In (b) for x/D = 600, the oblique angle has propagated inwards from the ends, and now covers the 
whole span in the chevron-shaped pattern. Pu’ote also the small waves on the vortices in (b), about 
6 0 0  downstream of the cylinder. Re = 95. 
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can be seen near the ends. I n  (b ) ,  after 600 diameters of travel, the 'chevron '-shaped 
oblique vortex pattern has taken over the whole span, and matches the oblique angle 
imposed by the end conditions. 

The observation that the starting flow involves parallel shedding although the 
asymptotic flow involves oblique shedding (at least in this case) could very well 
explain the contrasting observations by Hama (1957) and Berger (1964). Hama used 
a towing tank, and it is possible that he made his observations early in a run and 
therefore noted parallel shedding. Berger, on the other hand, used a wind tunnel and 
would therefore have made his observations on a wake that had reached its 
asymptotic state ; he thus noted oblique shedding. This explanation assumes that the 
end conditions were such as to cause a final state of oblique shedding ; this will occur 
with most usual cylinder arrangements. However, this is not always the case, as will 
be seen a t  the end of this section. 

Another feature of figure 7 ( b )  that  should be pointed out is the waviness in the 
vortices, which seems to be amplified at around 60 diameters downstream. Each of 
these waves originated from a disturbance created by one of the vortex dislocations 
(mentioned earlier), which occurred near the ends of the cylinder. These waves should 
not be confused with those that travel along vortex cores (such as are discussed by 
Aref & Flinchem 1984). I n  the present case, the wave8 appear a t  a slightly displaced 
spanwise position on each successive vortex to be shed, and do not seem to travel 
along the the vortex cores as these vortices are convected downstream. What is 
interesting here is that these disturbances are displaced, by the process of vortex 
shedding, inwards along the span from the ends. It seems that the angle of the 
oblique shedding is involved in the translation of these disturbances, and that these 
disturbances travel in a spanwise direction which depends on which way the vortices 
are oblique. 

It was decided at this point to manipulate the end conditions to see whether 
oblique shedding was always the 'final' state across the whole span. It was soon 
discovered that by angling inwards the leading edge of the endplates (of 10: 1 
disk-cylinder diameter ratio) some control of the flow over the whole span could be 
exerted. The idea of using angled endplates to affect the flow near the ends was first 
used by Ramberg (1983) in the case of yawed cylinders. If the leading edge of the 
endplates were angled inwards by 12" or greater (up to 20" was investigated), then 
parallel shedding was induced to  occur near the ends, which caused the whole span 
to  shed parallel vortices. A demonstration of this 'induced' parallel shedding in 
figure 8, (for Re = 110 and LID = 130), can be contrasted with the oblique 
configuration in figures 6 and 7. It was also confirmed from the wind tunnel that, 
with these end conditions, such parallel shedding was the 'final' state of the wake. 

It is believed that the parallel shedding is also two-dimensional, in the sense that 
the flow in one cross-section of the wake is representative of (and in-phase with) the 
flow in all cross-sections at other spanwise positions (with the exception of the 
regions close to the ends). Also, the absence of axial flow in the vortices was 
demonstrated in a further experiment by showing that blobs of dye placed at several 
spanwise locations were subsequently convected straight downstream (in planview), 
rather than being convected with a spanwise velocity component. We can also see in 
figure 8 how a gap in the dye marking the vortices (which was the result of an absence 
of dye a t  this particular spanwise location), convects straight downstream. 

A further experiment was conducted in the X-Y towing tank, which showed that 
as the angle of the endplate disks a (measured positive for the leading edge angled 
inwards) was varied from - 10" to + 12", so the angle of oblique shedding remained 
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FIGURE 8. Parallel vortex shedding mode, induced by angling inwards the leading edges of the 
rndplates by around 12', or more. Flow is upwards. Re = 110, LID = 130. Distance travelled by 
cylinder = 600 D. 

virtually constant at  14" to 15". As the endplate angle a > 12", however, the oblique 
shedding angle changed sharply to being parallel with the cylinder axis. 

With relevance to some of the above results, Eisenlohr & Eckelmann (1989) 
induced parallel shedding by ending their cylinder span with larger-diameter 
cylinders. Their explanation for this was that the larger cylinder introduced an end 
frequency which was sufficiently removed from the central flow frequency to be 
decoupled from it. The present situation using the angled plates is rather different. 
As a first step in understanding how the end conditions can control the span flow, it 
is of use to question why an end cell of lower frequency can appear. Gerich & 
Eckelmann suggested that the lower velocity in the endplate boundary layer induced 
a lower frequency up close to the endplate, whose influence extended over a span of 
several diameters by a 'lock-in' effect. However, Gerich & Eckelmann also found 
such an end cell of lower frequency to occur in the wake of a free-ended cylinder, 
when there is no endplate boundary layer present. 

In this investigation, it is suggested that the low-frequency end cell is caused by 
the base pressure being higher in the end region. Such an increase in pressure could 
be caused by the decrease in the coherence of the vortex shedding, because the 
vortices in the end region become orientated in the streamwise direction (see figure 
24 later). It is also consistent with the fact that very similar end cells are found for 
a free-ended cylinder as for one with an endplate (as mentioned above), and in the 
former case it is known that the pressure is higher in a region near the tip because 
the pressure is 'short-circuited ' around the end. Judging from other results, this 
increase in base pressure has the effect of enlarging the vortex formation region 
locally (Bearman 1965; Griffin & Votaw 1972) and corresponds with a decrease in 
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shedding frequency (as was shown clearly by Roshko 1955). By angling in the 
endplates, the base pressure near the endplates is reduced, until the pressure and the 
vortex frequency match those values over the rest of the span, and the shedding 
becomes parallel. (It seems that even under these conditions a very small lower- 
frequency cell remains close to the downstream side of the angled endplates, as 
indicated by figure 8.) This matching of the base pressure at  the ends of the cylinder 
with that over the central span is a concept which was used by Ramberg (1983) in 
his study of the flow over yawed cylinders, and was also achieved by angling the 
endplates. Consistent with the reduction in base pressure is a slight increase in the 
measured flow velocity incident on the cylinder and close to the plates. This 
reduction in base pressure may also be the cause of Eisenhlohr & Eckelmann’s 
observations that parallel shedding is also induced if a cylinder span is ended with 
larger-diameter (and coaxial) cylinders. In their case also, the flow would be speeded 
up around the ends of the larger cylinders, and the base pressure reduced in this 
region. However, the principal feature here is that parallel or oblique shedding can 
be induced over large cylinder spans simply by manipulating the end boundary 
conditions. 

Because it was found possible to induce either oblique or parallel shedding, it was 
decided to measure the streamwise wavelength in the two cases. The results, from the 
wind tunnel, are shown in figure 9(a).  (The procedure in measuring the wavelengths 
was to fix a particular Re, and then change the endplate angles to give first oblique 
shedding (plates parallel to the flow), and then parallel shedding (by angling the 
plates).) The data show clearly a discontinuity in the wavelength data at  Re = 64 for 
the oblique shedding case, and thereby reflects the discontinuities in Strouhal 
number and oblique angle 8 that were found at  the same Re in figure 1. What is 
significant about the results is first that the parallel-shedding curve is continuous 
whereas the oblique-shedding data are not. Secondly, the results shown in figure 9 (a) 
indicate that the following relationship holds well : 

where A, is the parallel-shedding wavelength and A, is the oblique-shedding 
wavelength. This means that the wavelength normal to the wavefront remains a 
constant, and equal to A, (for a given Re) irrespective of the oblique angle 8. 

The convection velocity U, of the vortices downstream can also be calculated 
simply from 

where Urn is the free-stream speed. The results in figure 9 ( 6 )  show that the convection 
speed is almost unaltered between the cases of oblique and parallel shedding, and 
therefore implies that Strouhal measurements in the two cases will also have a simple 
geometric relationship like equation (i), and this is confirmed later. 

The present results have shown that it is the effects from the ends that cause an 
oblique angle of shedding to be generated near the ends of the span, and which then 
spreads inwards along the span from one shedding vortex to another. The 
mechanisms that produces an oblique angle of shedding involves the complex 
interaction of the central-span vortices with those vortices in the end-cell region. The 
central vortices become ‘retarded ’ by those at the lower frequency, because part of 
a shedding vortex is influenced by the induced velocity from vorticity all along the 
span. It is difficult to provide a rigorous argument as to why a specific angle of 
shedding appears at a particular Reynolds number, although the angle is possibly set 
by a streamwise and a spanwise lengthscale. The spanwise scale might vary with the 
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FIGTJRE 10. Sketrh of the oblique front dividing a spanwise region of oblique vortices, from a region 
of parallel vortices. The front begins a t  the end of the cylinder and propagates spanwise to  the 
right, by induction effects during the process of vortex shedding. 

The data for the streamwise wavelength A can be used to  make some prediction of 
the time it takes for the wake to develop oblique shedding right across the whole 
span, after the start of the cylinder motion. Here, we suppose that therc is an 
'oblique front ', as shown in figure 10, between the oblique shedding, which started 
at  the ends and is travelling inwards, and the parallel shedding, which continues in 
the central portion of the span until the oblique front has passed through. (In reality, 
the oblique vortices will join the parallel vortices with some curvature rather than 
a sharp change of angle as shown.) Because the wavelength normal to either the 
oblique or parallel vortices is A,, then by symmetry the oblique front will be oriented 
at  an angle q5 = 

It was decided to investigate such an oblique front in experiment by having 
different end conditions, one of which induces an oblique shedding angle across the 
span (endplate parallel to  free stream), while the other end induces parallel shedding 
(endplate angled-in). This example is shown in figure 11, where a measurement of the 
angle of the oblique front, q5, was made. Some difficulty in this measurement was 
created by the fact that the parallel vortices were not precisely straight and also 
because the bend between the oblique and parallel voices splits up into two bends 
further downstream by Biot-Savart induction (as can also be seen clearly for the 
bend in the oblique shedding of figure 6a) .  Therefore the oblique front was defined 
as the intersection between lines drawn as nearly as possible through the parallel 
vortices (and parallel to the cylinder), and lines drawn through the oblique vortices. 
The resulting oblique front in figure 1 1  was angled at  $ = 9" to the free stream while 

to the free stream, as is shown in the diagram of figure 10. 
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the oblique shedding angle 0 was 17". This result suggests that the theory proposed 
above, which showed q5 = $3, is approximately correct. Ultimately, with such a pair 
of different end conditions, the vortices take on a constant oblique angle all the way 
across the span, rather than form a chevron oblique vortex pattern. 

A further interesting feature of the motion of the oblique fronts (travelling in from 
each end of the span) is the fact that the frequency of the parallel shedding f,, in the 
centre of the span must necessarily be greater than that for the oblique shedding fe 
behind the fronts at each side. These two different frequencies coexist simultaneously, 
yet a t  the same time the oblique and parallel vortices match up in phase across the 
front. This is consistent with the fact that by the time the chevron pattern of oblique 
shedding (across the whole span) has developed there will always have been more 
vortices shed in the centre of the span than at the sides. 

We are now in a position to estimate the distance that the cylinder must travel 
from its starting position, before the asymptotic state of oblique shedding across the 
whole span has been reached. When there is an oblique front, each vortex will have 
a bend between an oblique portion and a parallel portion of its length, although with 
each new vortex to shed this bend is displaced spanwise. In this way, the front is 
'propagated' along the span at a speed U', which can be derived from the simple 
geometry of figure 10 as, U, = U, tan ($9). (3) 
If the length of the cylinder is L,  then the distance (x) travelled by the cylinder, 
before the final state is reached, can be shown to be, 

where B is small. Now from experiments over a range of Re we have, &/Urn M 0.9, 
0 M 0.244 rad. (or 14"), and supposing for example that LID = 100, then (4) gives 
x / D  M 450, i.e. the cylinder travels around 450 diameters to reach the asymptotic 
state of oblique shedding all the way across the span (corresponding with about 90 
cycles of vortex shedding). This is surprisingly large, since we might otherwise 
consider the flow to have reached its asymptotic form after around 5 cycles, if we 
based our observations solely on a cross-sectional view of the wake. However, 
judging from estimates of x/D from experiments in the towing tank, such a large 
value is of the right order. 

It is necessary here to make clear one particular aspect concerning the influences 
of the end conditions on the flow over large cyclinder spans. In  such a case, the flow 
at a particular location in the central portion of a span is only directly influenced (in 
the main) by the vorticity distribution in the near wake for several diameters of the 
span to either side ; for example, it is shown in Appendix A how the end effects have 
a direct influence on the flow for a region of the order of 10-20 diameters in length. 
Their influence is felt over the rest of the span in an indirect fashion, by the gradual 
spanwise displacement of a disturbance such as a bend in the vortices (like the 
oblique front above) away from the ends. Such a bend in one vortex induces a 
velocity field (and phase of shedding) on the next shedding vortex in such a way that 
the bend is displaced spanwise. It is this successive vortex shedding in the near wake 
that is responsible for the gradual spanwise shift of such disturbances from the ends, 
causing the oblique front that was discussed earlier. The timescale over which a 
disturbance from the ends is ultimately felt in the centre of a long cylinder can be 
very much larger than a typical shedding period. The influence that the end 
conditions have on the flow over long cylinders is therefore of an indirect nature, with 
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FIGURE 12. The ‘universal’ Strouhal curve for a circular cylinder. Measurements from the wind 
tunnel: 0,  parallel-shedding data (D = 0.104 om, LID = 90); 0, transformed oblique-shedding 
data using the formula So = S,/cos19. ( D  = 0.104 cm, LID = 123); -, curves through the original 
8, data. Measurements from the X-Y towing tank : x ,0.657 cm cylinder, LID = 72 ; + ,0.328 cm 
cylinder, LID = 140. 

disturbances propagating somewhat like a ‘ chain reaction ’ along the span from one 
shed vortex to the next. 

In this section, it was shown how the boundary conditions at  the ends of a cylinder 
take time to become ‘matched ’ with the flow over the whole span. This feature was 
studied using some wake-wavelength measurements where it was found that a simple 
geometric relationship : A, = A, cos 8 holds between the parallel and oblique shedding 
cases. One might suspect that such a, simple relationship also holds between the 
shedding frequencies for the parallel and oblique cases, given that the convection 
speed for the two cases almost unchanged. Also, the fact that the wavelength data 
for parallel shedding vary continuously with R e  suggests that the Strouhal data for 
parallel shedding would be continuous also. Both of the above suppositions are 
confirmed in the next Section. 

4. Defining a universal and continuous S-Re relationship 
Judging by the results for a cylinder which sheds oblique vortices, it is not clear 

whether a continuous Strouhal curve, without discontinuities, actually exists. 
However, when the vortices are induced to be shed parallel to the cylinder, no mode 
transition occurs, because the vortices are shed parallel to the cylinder throughout 
the Reynolds-number range. Under these conditions a completely continuous 
Strouhal curve is found to exist, and is shown in figure 12 (as the solid symbols). The 
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FIGURE 13. Comparison of wake spectra for (a) the  quasi-periodic oblique mode, with (6) the 
(periodic) parallel shedding mode, at precisely the same Reynolds number. Re = 59.7. In  (a),  the hot 
wire is at z l D  = 37, LID = 71. In (b) ,  the  hot wire is at z / D  = 40, LID = 90. 

parallel-shedding data lie somewhat above the oblique-shedding data (the lines), and 
are thus consistent with the results of figure 1, where the trend of increasing 
frequency for decreasing angle of shedding was observed. (This trend is in accordance 
with the results of Eisenlohr & Eckelmann, and also with those of Ramberg for the 
wakes of yawed cylinders.) Not only are the data for parallel shedding continuous, 
but at  every point on the curve the spectra are periodic, as can be seen in figure 13(b) ,  
and this is contrasted with the quasi-periodic spectrum for the oblique shedding in 
( a ) ,  which reflected the presence of different-frequency spanwise cells. Both of these 
spectra were taken at  precisely the same Reynolds number. 

We shall now transform the original oblique-shedding Strouhal data in a 
manner similar to that which proved reasonable for the wake-wavelength data. If 
the oblique-shedding Strouhal numbers (8,) are divided by cos 0 (using data for 
frequencies and angles such as are in Appendix B), then the curve of the resulting 
Strouhal data, shown as the open circles in figure 12, becomes continuous and agrees 
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FIGURE 14. Variation of f W / v  with Re.  This plot demonstrates the continuous nature of the 
data  (O) ,  and also shows the least-squares curve fit (-) to  the data using the equation: 
S = A/Re+B+CRe,  where A = -3.3265, B = 0.1816, C = 1.600 x 

closely with the parallel-shedding data (So), thereby indicating that the following 

(5 )  
transformation holds : 

(The use of such a formula in this context was originally suggested by Garry L. 
Brown, private communication, from considerations of stability theory.) This result 
is consistent with (1) and (a) ,  which involved a COSB relationship for the wake 
wavelength, given that the convection speed U, remains almost unchanged between 
oblique and parallel shedding, a t  a given Re. It also shows that the parallel-shedding 
Strouhal curve So is universal, in that oblique-shedding Strouhal curves can be 
collapsed onto the universal curve using ( 5 ) ,  if the corresponding oblique angle 0 is 
also measured. 

As a further check to confirm the universality of the curve for So (at least for a 
circular cylinder), other frequency measurements for parallel shedding were 
undertaken in the X-Y towing tank. This is a particularly suitable check, because the 
water tank is a distinctly different facility from the wind tunnel. The vortex 
frequencies in the wakes of cylinders (of diameter 0.328 cm and 0.657 cm) were 
measured using an accurate auxiliary timing unit of a video recorder. The results are 
shown in figure 12 by the crosses, and agree well with the other data, although the 
frequencies could not be measured to the same accuracy as in the wind tunnel. This 
good agreement provides strong evidence that the parallel-shedding Strouhal curve 
is indeed universal, as well as being completely continuous. 

The universal Strouhal curve is believed to represent frequency measurements for 
two-dimensional vortex shedding. As described in 53.3, two-dimensional vortex 
shedding is understood to mean that the cross-sectional flow is similar and in-phase 
at all spanwise positions (except close to  the ends), and also that there is an absence 
of axial flow in the vortex cores. Also, i t  can be seen that the Strouhal numbers are 

so = s,/cose 

2u-2 



606 C. H .  K .  Williamson 

S 

0.21 

0.20 

0.19 

0.18 

0.17 

0.16 

0.15 

0.14 

0.13 

0.12 
40 60 80 100 120 140 160 180 200 

Re 
FIGURE 15. Comparison of two-dimensional vortex shedding frequencies from experiment and from 
numerical simulations. The plot shows Strouhd numbers S versus Reynolds numbers Re. 
Experimental results: 0 ,  0, +, x , symbols as in figure 12. Numerical results: ---, Karniadakis 
t Triantafyllou (1989), spectral method ; -------, Sa & Chang (1989), finite-difference technique ; 
A Braza et al. (1986), finite-volume method. 

unaffected by a variation in LID, at least for values considered in figure 12 where 
L / D  > 70. This suggests that the parallel shedding is independent of the direct 
influence of the end conditions. For the purpose of comparison with two-dimensional 
numerical computations, the Strouhal-Reynolds number relationship is given 
closely by 

where A = -3.3265, B = 0.1816, C = 1.600 x This least-squares curve fit was 
made to the parallel-shedding data plotted in the manner shown in figure 14, where 

S = A/Re+B+CRe (6) 
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the continuous nature of the data is clearly observed. The parameter fD2/v, where v 
is the kinematic viscosity, was first used in the context of vortex shedding by Roshko 
(1954), and is equal to the product SRe. Equation (6) was thus found by fitting a 
quadratic to this data, giving a root-mean-square error (averaged over all the points) 
of 0.000089, with an average percentage error of 0.06%. Similarly, a linear least- 
squares fit can also be used, which gives, for (7)  with C = 0;  A = -5.1064 and 
B = 0.2175, with a root-square error of 0.000415. For reference purposes, Appendix 
B contains a tabulation of the main Strouhal data for different cylinders, and data 
for the oblique and parallel cases. The Appendix also contains some measurements 
of oblique shedding angles. 

Two-dimensional numerical computations of the flow past a circular cylinder have 
been undertaken by Karniadakis & Triantafyllou (1989) over a range of R e  from 40 
to 250, using a spectral method, and similarly by Sa & Chang (1989), using a finite- 
difference technique. Their results for the Strouhal-Reynolds number relationship 
are compared with the present experimental data for the parallel shedding in figure 
15. Two further data points from Braza, Chassaing & Ha Minh (1986), using a finite- 
volume method, are shown by triangles in this plot. Although the numerical 
calculations have a trend that agrees with the experiments, one of the curves of the 
numerical data lies 5 %-I5 YO above the experimental results, while the other 
numerical data curve lies similarly below the experimental results. However, there 
is closer agreement with the two data points of Braza et al. It is not known why there 
is a disparity between the sets of results in figure 15, though it is perhaps possible 
that differences in the treatment of the boundaries in the calculations might, to some 
extent, contribute to the differences between them. In the case of Braza et al., their 
calculations place the boundaries a t  an infinite distance from the cylinder. Further 
work is also underway a t  the California Institute of Technology (A. Leonard and F. 
Pepin) to simulate the cylinder wake in an infinite domain, circumventing problems 
that may be associated with proximity of the boundaries to the body. 

5. An explanation for the transition between oblique shedding modes 
The transition of oblique shedding modes a t  R e  = 64 is explained in this section in 

terms of a matching or a mismatching between the end conditions and the flow over 
the rest of the span. Initially, we shall investigate the similarities between Tritton's 
Strouhal discontinuity and the present one, and see whether it is likely that his 
discontinuity is caused by the same oblique-mode transition. 

Strouhal data from both Roshko and Tritton are compared with the present 
parallel-shedding data in figure 16. In the case of Tritton's data, one can see that 
both of his curves lie below the parallel-shedding curve, in a manner not unlike the 
present oblique-shedding data (see figure 12). If we assume that these frequencies are 
lower because the vortices are oblique, then it is possible to infer from Tritton's data 
what value of oblique angles 0 were present in his experiment from (5) i.e. 8 = 
c0s-l (So/S,,), using the present parallel-shedding data So. It is clear that the trend 
of the predicted 8 from Tritton's data in figure 17 is similar to the variation found 
here, except that Tritton's discontinuity occurs a t  the higher Reynolds number of 
around 100. For example, at higher Re the inferred data from Tritton asymptote to 
around 12"-14" like the present results, and a t  low R e  also, the curve from Tritton's 
data goes through the present results. Perhaps the most interesting aspect of this 
comparison is the similarity in the peak values of 0 a t  which a transition to a different 
mode occurs. These similarities in the form of the data, despite the different R e  for 
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FIGURE 16. Comparison of the parallel-shedding Strouhal curve (-) with the previous data of 
Roshko (1954) and of Tritton (1959). The curve fits used were: Roshko, 9 = -4.5/Re+0.212 

speed mode), S = -6.’i/Re+0.224 (-.-.-). 
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FIUURE 17. Comparison of present measurements of oblique-shedding angle H (0, a), with the 
predictions of 0 based on Tritton’s Strouhal data, using (5) (----). Both sets of data show similar 
trends, except that  the He for the discontinuities are different. 

the discontinuity, suggest that his discontinuity is also likely to be the result of a 
breakdown from one oblique mode of shedding to another. The difference in the 
Reynolds numbers for the discontinuity is not fully understood, although this point 
is further discussed in $7. 

Returning to figure 16, it is interesting that the level of Roshko’s original data 
seems rather close to  the present parallel-shedding curve, with the maximum 
deviation being around 2.5%, but the reasons for this agreement are not known. 
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versus Re. Kote the discontinuity at a critical value of f,fo/j,,) = 0.947, occurring at Re = 64. 

Similar agreement is also found between the data of Norberg (1987) and the present 
parallel-shedding data, and a common feature for both Roshko's and Norberg's data 
is that their length/diameter ratios were of the order of 2000. 

It could be suggested that the transition from one oblique-shedding mode 
to another occurs when the wake in some manner cannot sustain a higher 0, with 
the critical angle from the present experiment (and Tritton's experiment) being 
Bcrit x 19". Alternatively, as Re is reduced, the transition can be viewed as occurring 
when the ratio fe/fo (shown in figure 18) decreases to a critical value, which in this 
case is close to  0.95, at which time fe/fo jumps discontinuously to  a different higher 
value. One suggestion for the mode transition is as follows. The effects of the ends is 
to impose an angle of shedding over the whole span, and thereby also a decrease in 
the frequency of shedding cfe) compared to the two-dimensional case (fo). If we 
suppose for the moment that the two-dimensional mode is the most unstable case, 
then it is likely that there will be a lower limit to which the end effects can 'pull 
down ' the shedding frequency (fe) away from the two-dimensional frequency (fo). 
When this lower limit of fe/fo is reached, then the flow over the span breaks away 
from the influence from, or falls 'out of synchronization' with, the end conditions. 
This suggestion to  explain the transition of oblique shedding modes is explored 
below. 

While it is not correct to apply linear stability theory for parallel shear flows in the 
highly non-parallel near wake of a bluff body, it is nevertheless worth mentioning a t  
this point a result that is derived from Squire's transformation (Squire 1933). It can 
be shown (for a given wake profile and Reynolds number, and for a parallel flow) that 
if the two-dimensional frequency and temporal growth rate of disturbances are 
respectively fo and no, then for a wave at angle 8, the most unstable frequency f, is 
given by fe = fo cos 0,  and similarly the growth rate re is given by a, = uo cos 6. Thus 
the growth rate of an oblique wave reduces as its angle B increases, leaving the two- 
dimensional waves as the most unstable case. It should also be noted that the 
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frequency f e  follows a cos 0 relationship analogous with (5 ) ,  though we cannot use this 
locally parallel theory as an explanation of this relationship. Monkewitz (1988) has 
further shown that the observed bluff-body vortex shedding could be interpreted as 
the nonlinear saturated result of a global instability, over a spatial region of 
absolutely unstable flow in the near wake. He investigated a set of typical wake 
velocity profiles for which the absolute growth rates of oblique waves, in every case, 
were found to be less than those for the two-dimensional waves. Again, the two- 
dimensional waves were shown to be the most unstable case. 

An interpretation of the present results can be given by making the analogous 
supposition that, in the cylinder wake, two-dimensional or parallel vortex shedding 
is the most unstable mode. As outlined above, when the Reynolds number is reduced, 
the end effects impose a decrease in the oblique angle of shedding and a reduction 
of the shedding frequency f e  compared with the two-dimensional shedding frequency 
f,, until the ratio fe/fo reaches a lower limit. The central span then jumps out of 
synchronization with the end conditions to a more unstable mode, where the smaller 
oblique shedding angle is closer to the two-dimensional case, with a higher growth 
rate and a higher frequency ratio f e / f o  as seen in figure 18. The transition of oblique 
shedding modes is then a transition from one mode where the central span matches 
the end boundary conditions to another mode which does not match the end 
conditions. 

This kind of response to the influences from the end conditions has similarities with 
the forcing of a nonlinear oscillator, whose response can become synchronized with 
the forcing frequency over a range of values of the forcing frequency. Such a system 
also exhibits jumps when the frequency of the oscillator falls out of synchronization 
with the forcing frequency. The above interpretation of the results is clearly only a 
suggestion that is based on the supposition that smaller oblique angles of vortex 
shedding are more unstable. Further analytical support could perhaps come from a 
global theory which takes into account the non-parallel nature of the absolutely 
unstable wake region behind the body (and ultimately the presence of the body 
itself). 

It could also be mentioned here that, for Re < 64, the angle of shedding in the 
central-span region, although of a low value, is not actually parallel to the cylinder. 
This is because the central region is sandwiched between the cells of frequency fL, 

which are not precisely those end conditions required to generate parallel shedding. 
A further suggestion to explain the mode transition can be put forward by 

considering the spanwise speed of propagation of the oblique front U,, which was 
introduced in $3.3. A certain speed U, is required to match the oblique and parallel 
vortices in phase across the front, as shown schematically in figure 19(a). As each 
vortex is shed, the location of the bend (joining the oblique portion of each vortex 
to its parallel portion) is displaced spanwise relative to the preceeding vortex. When 
the transition occurs, the shedding process is unable to translate the front rapidly 
enough at speed U, to keep the vortices in phase, and then ‘vortex dislocations’ 
appear, as are shown in the diagram of figure 19(b). In this case, the bend is not 
displaced spanwise a sufficient distance (say z*)  per cycle to keep the vortices 
matched in phase. This displacement z* can be estimated by considering the 
geometry of the front in figure 19(a), in particular the triangle in this figure, from 
which z* = A, tan (80). The mode transition happens when 0 = 19’ and A, = 6.20, 
giving a critical value of z* z D .  In the experiment, a reduction in Re brings an 
increase A. and 0, thereby z* increase until the shedding mechanism is, in some 
manner, unable to displace the bend greater than this critical z* of one diameter over 
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a cycle. The oblique and parallel vortices then move out of phase with each other. At 
this point, the central portions of the span continue to shed vortices at a higher 
frequency than the more oblique vortices to the sides, resulting in the appearance of 
the spanwise cells of different frequency, and also the ‘vortex dislocations’ between 
the cells. 

6. Structure of ‘vortex dislocations ’ between cells of different frequency 
One of the immediate questions that arises when there are spanwise cells of 

different frequency is, what happens to the vortioity betwecn one cell and anothcr Z 
When the vortices in both cells are close to being in phase with cach other, then thc 
vortices in the cell of lower frequency tend to get induced downstream by the higher- 
frequency vortices in the other cell, and vice versa. This is because the phase of 
shedding of one part of a vortex is influenced by the distribution of near-wake 
vorticity to either side along the span. It is by this process of cell interference that 
the vortices develop angles that are oblique to the cylinder. When the two cells are 
out of phase, however, a rather contorted ‘ tangle ’ of vortices appears across the cell 
boundary in what is here called a ‘vortex dislocation’, in analogy with dislocations 
that appear in solid materials. It is this aspect of the flow about the cylinder that is 
studied in some detail in the present section. 

Recent work by Eisenlohr (1986) suggests that  it is possible for vortices of one sign 
to split and connect with two other vortices of the same sign. This was observed from 
smoke visualization near the ends of the wake of a flat plate (parallel to the flow) 
which had a blunt trailing edge, and an example is included in Eisenlohr & 
Eckelmann (1989). We might thus expect similar phenomena to occur when the 
vortices dislocate near the ends of a circular cylinder. 

Browand & Troutt (1985) have also found vortical structures to b(3 gcncrated 
naturally in the shear layer (downstream of a splitter plate) between spanwise cells 
of different frequency, or between cells of similar frequency but which are o u t  of 
phase with each other. These vortical structures were inferred from velocity 
measurements using a rake of hot wires along the span. Browand & Ho (1987) 
suggested that these ‘defects ’ or dislocations could be due to  slight non-uniformities 
in the flow, causing differences in frequency along the span. Vortex dislocations could 
also be induced to  occur artifically by spanwise acoustic forcing (Browand & Ho; 
Browand & Prost-Domasky 1988, 1989) and a process similar to  the vortex splitting 
(mentioned above) could be inferred from their velocity measurements. 

Also, Gharib, Aref & Stuber (1988) have extended the work of Van Atta et al. 
(1988), where a vibrating wire created spanwise structures due to  interactions of the 
wire frequency with the natural shedding frequency. They considered the case of a 
shear layer forced to have different frequencies over each half-span, by the use of 
heater strips. They made the suggestion that vortical structures between cells of 
different frequency could be part of the fundamental process by which streamwise 
vorticity is generated in shear flows. The present results are consistent with their 
suggestions, and it is found in this section that the generation of streamwise vorticity 
is clearly a fundamental characteristic of vortex dislocations. 

In the present case of the oblique vortex shedding modes there are two types of cell 
boundaries, corresponding with either the beat frequency (fL - f r )  or (fu - f L ) .  
Physically, it  is useful to know how many shedding cycles there are between one 
dislocation and the next. If two neighbouring cells have Strouhal numbers of S, and 
S,, then this can be derived simply from 

%J = 8U/(8U-A9L), ( 7 )  
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FIGURE 20. The number of cycles between vortex dislocations, on the high-frequency side of the 
cell boundaries n. versus Re. 

where nu is the number of cycles on the high-frequency side of the dislocation. On the 
low-frequency side, nL = nu - 1 .  If we take, for example, the case in figure 5 ,  then 
nu = 32.3. This is approximately indicated in figure 5 (b ) ,  and it  measures the beating 
period of the velocity fluctuations. Similarly, near the end cell the number of cycles 
in a beating period is found to  be 9.1 or 10.1, depending on which side of the cell 
boundary is considered, and this is shown in figure 5 ( d ) .  A plot of nu over the whole 
range of Re, and for the high-frequency side of the cell boundaries, is shown in figure 
20. The lower data in this plot show the number of shedding cycles per beating period 
for the end-cell boundary (i.e. between cells of frequency f L  and f,), while the upper 
data, a t  the lower Reynolds numbers, correspond with the boundary between the 
cells of frequency fu and f L .  

Typical formation of vortex dislocations, which occur a t  the end of the cylinder, 
can be seen in figure 21. This sequence of photos covers a complete beat cycle, in that 
the dislocation in figure 21 ( a ) ,  which is shown in the right half of the picture, is then 
repeated almost exactly by the time the photograph in figure 2 1 0  is reached. It 
seems to be a common feature of such dislocations that ‘vortex division’ (termed 
vortex splitting above) takes place; in this case for example vortex a in figure 21 (c) 
is shown to divide and connect with two other vortices b and c of the same sign in 
the higher-frequency cell above. The vortex dislocation, marked by the letter D, can 
be seen forming in the near wake of the cylinder as we move from figure 21 (b )  to 
21 (d). Thereafter in the near wake the vortices of each cell are linked more in phase 
across the cell boundary in figure 21 ( e , f ) ,  until the next dislocation will appear. The 
spanwise extent of the dislocation clearly expands as i t  travels downstream in figure 
21 ( e ,  A, and the process generates streamwise as well as spanwise vorticity, as will 
be seen more clearly later. Also, as each dislocation forms, so it is gradually displaced 
spanwise, leaving a trail of dislocated vortices a t  some small angle to the free stream. 
This process is shown schematically in figure 19, and can also be observed in figure 
6 ( b ) ,  and seems to be similar to the ‘climbing’ or spanwise displacement of 
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FIGURE 21. Development over one beating cycle of a ‘vortex dislocation ’ near the bottom end of the 
cylinder span. Flow is from left to right. In (c), note the vortex a in the lower cell dividing and 
connecting to vortices b and c of the same sign in the higher-frequency upper cell. The dislocation 
is marked with the letter D. Re = 100. 

dislocations observed from hot-wire measurements by Browand & Prost-Domasky 
(1988). (This terminology again comes from the field of material science.) 

From hot-wire measurements (made in the wind tunnel) in this end region of the 
cylinder, the time traces in figure 22 ( a )  show that within the end cell ( z /D = 4.0), or 
within the central cell ( z /D  = 19.2), the velocity fluctuations are reasonably periodic, 
but they have different frequencies. In  the trace a t  z /D = 9.0, it is a t  the positions 
marked D that the vortices in each cell dislocate, and thereby minimize the velocity 
fluctations, because the induced velocities from the vortices on either side are out of 
phase. Also, in figure 2 2 ( b ) ,  the variation of the phase difference between the trace 
at  z/D = 9.0 relative to that a t  z /D  = 19.2 suggests that the vortices bend gradually 
out of phase for around six cycles then, during a dislocation, the phase changes rather 
rapidly in the other direction over about two cycles, and this process repeats itself. 
It is as though the vortices resist the relinking process across the cell boundary, and 
then suddenly ‘snap ’ through a dislocation to a new linking configuration. The range 
of this phase change shown in figure 22 ( b )  is of the order of in, which in space is about 
half a wavelength. 

A more detailed demonstration of the vortex structure of a dislocation is given in 
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FIGURE 22. (a) Time traces of velocity fluctuation at different spanwise positions (across the end 
cell boundary), and (b )  phase difference between the fluctuations at z/D = 9.0 and those at z /D = 
19.2. Note that the fluctuations at z /D = 19.2 have a higher frequency than those at z/D = 4.0. The 
dislocation is marked with the letter D. Re = 99.6, S,  = 0.1602, S, = 0.1407, n = 8.2 or 7.2. 

figure 23 using ordinary dye flow visualization, with the vertical cylinder moving to 
the right past the fixed camera. Each of the photographs on the left is accompanied 
by a sketch of the main vortices on the right, where positive vortices are shown as 
dashed lines and negative vortices by full lines. In this sequence, the higher- 
frequency cell lies above the lower-frequency cell, and it is of interest to see how the 
vortices ‘divide’ as the dislocation develops. In figure 23(a) ,  the vortex division 
begins with a positive vortex B in the lower cell being connected to positive vortices 
B and B’ from the upper cell, i.e. some of the vortex lines from the lower vortex B 
continue to the upper vortex B, while some of the lines continue into B’. The 
formation of this vortex division occurs during the roll-up process in the near wake 
of the cylinder. In  figure 23 ( b ) ,  similarly to this case the lower negative vortex C is 
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FIUURE 23. Development of a ‘vortex dislocation’, shown from photographs on the left-hand side, 
and from corresponding sketches of the vortices shown on the right-hand side. (’ylinder moves to  
the right (camera fixed). The vortex links between the upper-cell vortices (at the higher frequency) 
with those in the lower cell are stretched into loops, which results in the generation of‘ snme 
streamwise vorticity. Pu’ote also vortex division whereby a vortex can hr connectrd with two other 
vortices of the same sign. RP = 100. 

connected to two upper negative vortices C and C’, and in figure 23(c),  B‘ is 
connected both to B and D. By this time the main part of the dislocation is almost 
complete, and vortices E, F in figure 2 3 ( d )  are more directly linked across the ccll 
boundary. One feature that is clearly noticeable in these figures is the streamwise 
stretching of some of the links between vortices of the upper and lower cells. For 
example, the links between C to C’ or B to B’ bccome stretched into loops of vorticity 
in figure 23(b ) ,  ( c )  and (d), and thus some streamwise vorticity is generated during 
the formation of a vortex dislocation. 

Based on the present observations, we can consider an idealization of how the 
vortices oftwo cells might be connectcd. An assumption is made that all the vorticity 
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FIGURE 24. Connection of vortices back to the cylinder, occurring at the end of the span. Flow is 
to the right. This photograph was taken before the first dislocation appeared, near t,he start of 
cylinder motion. Kote the outer layers of the vortices (vortex sheets) rolling around the central core 
regions. Re = 70. 

I I 
10 Wavelengths I 

1 
10 
\ 

- 

t 
t 

I 
I 

Vortices of strength 5 

t 

' 2  - 
10 
\ 

\ 

\ 
\ 

1 
10 
- 
\ 
\ 

1 n 
/ 

/ 

I I I I 
Vortices of strength 1 

r- 9 Wavelengths H 
I I 

FIGURE 25. Idealized sketch of vortex division and linking between a higher-frequency cell above 
with a lower one below, of frequency ratio 10 :9. Solid links are of greater strength (indicated by 
the numbers) than the dashed links. 

of one cell is connected to the vortices in the other cell, rather than turning around 
180" and being linked to other vortices of the same cell. This assumption is supported 
by all the present observations, including visualisation of the vortices at the end of 
a cylinder in figure 24, where it seems that the vortices are connected back upstream 
to the cylinder. It appears that  these connections become distorted by the rotating 
vortices as they travel downstream, giving only the appearance that they are linked 
(as could be inferred from figure 21). An idealized sketch in figure 25 shows the relative 
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strengths of the vortex links (indicated by the numbers) between an upper cell and 
a lower cell, with a ratio of cell frequencies 10:9. It is assumed that the two cells 
convect downstream (to the right) at the same speed, and that circulation is 
produced at  the same rate upstream for each cell. The upper-cell vortices therefore 
have a strength 6, if the lower vortices are of unity strength. Obviously the relative 
phase of the two cells affects the picture, and this sketch shows only one possibility. 
The starting point in drawing the figure was the supposition that a lower vortex ( 1 )  
divides into two halves. Then vortex (2) in the upper cell will divide into vortices of 
strength and 8. Vortex (3) will then divide into vortices of strength & and 8, and 
so on, until the complete sketch is built up. What is of interest in this idealization is 
the relative strength of the vortex links. It is quite possible that the weaker links (say 
& strength or below) will be difficult to see in an actual experiment, especially as they 
may involve vorticity more spread out in the outer layers of the vortices, rather than 
the more obvious rolled-up core regions of the vortices. For example, the sketches 
that were drawn from the photographs in figure 23 show only the main vortex 
divisions. However, upon closer inspection of vortex A in figure 23 ( d )  as an example, 
we can see that further vortex division may be present. It may therefore be difficult 
to trace, in an experiment, all of the vortex linking that might be suggested from 
such an idealized model. 

It has been suggested before by Eisenlohr & Eckelmann (1989) that, at the ends 
of a cylinder span, all the spanwise vortices join into the horseshoe vortex that is 
formed upstream at the junction of the cylinder with the endplate. However, the 
present visualization (in figures 21 and 24, for example) suggests that the wake of the 
disk and horseshoe vortex are separate from the mechanism by which the vorticity 
is arranged at  the end of a span. This is definitely true in the case of a free-ended 
cylinder, for which no endplate is present. Although it is clear that, at  the ends of a 
span, the vorticity is turned in the streamwise direction, it is difficult to determine 
the details of the vorticity distribution in the region close to the cylinder without 
further careful visualization. 

In summary, at the boundary between cells of different frequency, the vortices of 
one cell and the other are found to move in phase and out of phase with each other. 
It is therefore not a surprising result that vortex division occurs where typically one 
vortex is divided up and connected with two others of the same sign in the other cell. 
However, the dynamics of the vorticity during an out-of-phase period or vortex 
dislocation is rather complex, and involves a streamwise stretching of some of the 
vortex links into loops of vorticity. The resulting vortex dislocations may develop 
into spot-like structures which expand spanwise as they travel downstream. 

7. Discussion 
There are a number of results (in the literature) to support the assertion that 

Strouhal-Reynolds number discontinuities can be caused by either flow non- 
uniformities, in the form of shear in the free stream (e.g. Gaster 1971), or by cylinder 
vibration (e.g. Van Atta & Gharib 1987 ; see review by Bearman 1984). However, 
even without the presence of these phenomena, a discontinuity in the Strouhal- 
Reynolds number relationship can exist. In the case of the oblique shedding 
observed here, we have found that the Strouhal curve has a single discontinuity, 
which is due to a transition from one oblique shedding mode to another. Also, from 
the results in figure 17, it seems likely that Tritton’s experiments reflected the 
presence of the same phenomena, although he proposed that there were two intrinsic 
modes based on different forms of two-dimensional wake instabilities. 



Vortex shedding in the wake of a circular cylinder 619 

More recently, Karniadakis & Triantafyllou ( 1989) have concluded, from their 
two-dimensional numerical computations, that the wake is always periodic in the 
absence of external forcing, such as that forcing due to cylinder vibrations. They 
suggested, on the basis of their study of a two-dimensional wake, that non-periodic 
states in laminar wakes cannot be caused by phenomena of pure fluid-mechanical 
origin. However, in the present study, it is specifically the three-dimensional nature 
of the flow (i.e. the oblique shedding) that causes the wake to be non-periodic (i.e, 
quasi-periodic) despite there being no external forcing. Relevant to this point, there 
has been some debate recently over whether chaotic or quasi-periodic wake velocity 
spectra (of the type recorded by Sreenivasan 1985) would exist in the absence of any 
cylinder vibrations. On the basis of the present results, it seems quite conceivable 
that some characteristics of Sreenivasan’s wake spectra could be attributable to the 
existence of different oblique shedding modes, although proof of this would require 
further information regarding body vibrations, etc. 

Although the existence of Strouhal discontinuities has been found by a number of 
previous investigators, there has nevertheless been little agreement as to the critical 
Reynolds number a t  which there is a change of shedding modes. The present 
experiments yielded a critical Reynolds number for all three cylinders of 64+ 1 
(despite their different length/diameter ratios, and endplate diameter/cylinder 
diameter ratios). Possible causes for differences in the critical Reynolds number 
could, for example, be different levels of flow non-uniformity, differences in the end 
conditions, or possibly differences in the levels of turbulence in the free stream (as 
suggested by Berger & Wille 1972). An investigation into such possibilities was not 
made here. A further feature concerning the oblique modes of shedding is the 
possibility that a periodic mode may exist below the Reynolds-number region where 
the Strouhal curves overlap ; for example, below R e  = 85 for Tritton’s data in figure 
16. The flow over the span may somehow match the end conditions again over this 
lower region, although such a case was not observed for any of the cylinders in the 
present case, because no clear periodic mode was found below R e  = 64. 

One of the questions prior to the present work was whether the wake over large 
cylinder spans was truly unaffected by the presence of the end conditions (outside the 
end cells of lower frequency f, in figure 3), as had previously been supposed. The 
present results show that, for hundred of diameters, the wake can indeed be affected 
by the end conditions. It seems likely that spans of even thousands of diameters in 
length can be affected or ‘controlled’ by the end effects, although in practice this 
may require good uniformity of the free stream over large distances, and therefore 
may be difficult to attain. 

Finally, it was of interest to investigate whether the phenomena observed in the 
present study were applicable also to other bluff body wakes, and for this reason (on 
the suggestion of Garry L. Brown, private communication) a flat plate parallel to 
the flow was mounted in the wind tunnel. The plate had an elliptical leading edge and 
blunt trailing edge to allow vortices to shed effectively from a bluff body, and the 
chord-to-width ratio could be varied between values of 4, 8 or 12. It was found that 
not only were vortices shed obliquely, but also that a similar transition of modes and 
Strouhal discontinuity occurred for the plate as it did for the cylinder, involving also 
the spanwise cells of different frequency and vortex dislocations. This result suggests 
that similar phenomena found for the cylinder wake may also be observed for a 
variety of bluff bodies of different cross-section. 
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8. Conclusions 
The present study of the laminar vortex shedding from a circular cylinder has 

shown that a discontinuity in the Rtrouhal- Reynolds number relationship exists, 
which is caused by a transition from one modc of oblique vortex shedding to another 
oblique mode. This transition is caused by a change from one modc where the end 
conditions match the flow over the whole span, to another mode where the end 
conditions are unable to match the central flow. In the case where the flow over the 
span matches the end conditions, the oblique shedding takes on the appcaranoc of a 
chevron pattern, with a symmetry about the centre span. 

The phenomenon of oblique shedding is found, in the present case, to be caused 
by the end effects. Initially, after the start of motion in a towing tank, the shedding 
is parallel to the cylinder. Thereafter, an oblique front gradually travels inwards 
along the span from each end, bringing behind it a region of oblique shedding. until 
ultimately the whole span sheds oblique vortices in the chevron pattern. Thcse 
observations reconcile the contradictory reports of Hama (1957) who used a towing 
tank and found only parallel shedding, and of Berger (1964) who used a wind tunnel 
and found only oblique shedding. 

Using the observation that the wavelength normal to the vortices is a constant a t  
a given Reynolds number, irrespective of the shedding angle, an estimate can be 
made of the time it takes (after the start of cylinder motion) before oblique shedding 
has covered the whole span. For a typical span length of 100 diameters, the cylinder 
must travel of the order of 500 diameters for the wake to  reach its oblique-shedding 
asymptotic form, which is a surprisingly large distance in comparison to estimates 
based solely on cross-sectional observations. 

It is clear that the end conditions affect the vortex wake over the entire span for 
cylinders of even hundreds of diameters in length. There are, in essence, two forms 
of influence exerted by the end conditions over such wakes. The end effects have a 
direct influence over a region of the cylinder span of the order of 10-20 diameters 
in length. Their influence over the rest of the span is of an indirect nature. with 
disturbances such as a bend in the vortices being propagated along the span 
somewhat like a chain reaction from one shed vortex to another. 

One of the oblique-shedding modes involves the existence of spanwisc cells of 
different shedding frequency. Between these cells, ‘vortex dislocations ’ are 
periodically formed when the cells move out of phase with each other. These 
dislocations generate complex patches of streamwise vorticity, and involve vortex 
division whereby a vortex of one cell can divide up and become connected with two 
other vortices of the same sign in the other cell. These observations of vortex division 
basically corroborate the work of Eisenlohr (1986) and Eisenlohr & Eckelmann 
(1989), who refer to this same phenomenon as ‘vortex splitting’. 

Because the vortex shedding over large spans is influenced by the end conditions, 
it was found possible to manipulate the end conditions (by slightly angling inwards 
the leading edges of the end plates) in order to cause a boundary condition of parallel 
vortex shedding, and thereby induce parallel shedding across the whole span. In this 
case, no change of shedding mode takes place as Reynolds numbers are varied, and 
therefore the Strouhal-Reynolds number plot becomes completely continuous. The 
resulting Strouhal curve is also universal in the sense that other oblique-shedding 
Strouhal data (So) can be collapsed onto the parallol-shedding data (h’,,), if the angle 
of oblique shedding (8) is also known, using the formula S,  = S,/cosO. 

It is believed that the parallel-shedding case represents truly two-dimensional 
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vortex shedding, in the sense that there is an absence of axial flow in the vortices and 
t,he flow within one cross-section is representative of (and in-phase with) the flow a t  
all spanwise positions (with the exception of close to the ends). The Strouhal data for 
this two-dimensional shedding has been compared with results from two-dimensional 
numerical simulations, although the comparison yields a large disparity amongst the 
computations themselves, and also with the experimental results. This large 
disparity is not, as yet, understood. 

In conclusion, there has been some question in the past whether oblique shedding 
or parallel shedding is the intrinsic mode of the wake. The present results show that 
they are bot,h intrinsic and are simply solutions to different problems, because the 
boundary conditions are different in each case. 
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Appendix A. Effect of a variation of LID on the oblique-shedding 
frequency and cell structure 

In the case of a long cylinder a t  a Reynolds number above the discontinuity 
(Re > 64), a cell of frequency (denoted f,) can be found over the main body of the 
span, with two further cells of lower frequency (denoted 1,) found near the ends and 
extending over a spanlength of around 10 diameters. If the length of the cylinder is 
reduced, the central cell is found to contract until, a t  a certain critical LID (found 
here to be 28), this central cell suddenly vanishes. At this point the end cells merge 
together, leaving the whole span shedding vortices a t  the one frequency f,. (Such an 
observation is consistent with the results of Gerich 1986.) This phenomenon can be 
observed from the spectra and diagrams shown in figure 26, for a Reynolds number 
of 101.0. I n  the left column are shown spectra taken from a hot wire situated in the 
centre of the span, for various LID. I n  the right column are shown diagrams of the 
corresponding arrangements of the different frequency cells across the span. 

For values of LID > 45, the wake velocity fluctuations give a periodic spectrum 
with a peak corresponding to the frequency fL (giving in this case a Strouhal number 
of 0.1610), as shown in figure 26(a). As LID is reduced, so the hot wire increasingly 
feels velocity fluctuations a t  the end-cell frequency f, until, a t  a value of LID = 30 
in figure 26(c), there is approximately equal energy from fluctuations at the two 
frequencies. In this case, the spectrum is quasi-periodic with many peaks, all of which 
correspond with combinations of the two frequencies fL and f,. As can be seen in 
figure 26, there is a gradual change in the form of the spectrum as LID is reduced 
down to the value of 28, although further reduction in the cylinder length causes a 
sudden vanishing of the central cell, and with it an abrupt change from a quasi- 
periodic spectrum to a periodic one. This is demonstrated clearly by comparing figure 
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FTQURE 26. Effect of a variation of cylinder length/diameter ratio (L /D)  on the spectra oSthe wake 
velocity fluctuations (shown on the left), and on the cell arrangement along the span (on the right). 
The hot wire was situated in the centre of the cylinder span in each case (position shown in the 
diagrams by a solid circle), a t  around 10 diameters downstream of the cylinder axis and 1.5 
diameters Srom the wake centreplane. Re = 101.0. D = 0.061 cm. Endplate diam./cylinder diam. = 
15. Endplates parallel with the free stream. 

26(c and d) .  In  the latter case, the spectrum now has a peak corresponding to a 
Strouhal number of 0.1408, which is 13% below that for the periodic spectrum in 
figure 26 (a). 

Measurements of Strouhal number in figure 27, again a t  Re = 101.0, show that 
for LID > 28 the frequency fL over the central span is unaffected by a variation in 
LID. Also, velocity fluctuations at the frequency f, can be felt in the spectrum for 
LID < 45. These results suggest that for L / D  > 45, the vortex shedding in the 
central span is unaffected by the direct influence of the end cells. Nevertheless, the 
end effects have an influence on the flow over the whole span in an indirect fashion, 
and this point is discussed further in $3.3. 

With relevance to the above results, some indication of the relative importance of 
different parts of a wake vorticity distribution in inducing velocities at a point close 
to the cylinder, can be given from Biot-Savart considerations. For example, consider 
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FIGURE 27. Strouhal number S versus cylinder length/diameter ratio LID for the frequency of 
vortex shedding in the centre of the span. Re = 101.0. Note the sudden drop in the frequency a t  
LID = 28, which corresponds with an abrupt change in the spectra and cell arrangement shown in 
figure 26. 

an element of a wake vortex parallel to the cylinder, and lying at  (z, z )  which are the 
streamwise and spanwise coordinates relative to the point of interest (our origin). 
Then the magnitude of the induced velocity 1Aul can be shown to vary as 

JAuJ = As(’) 5 

4x ( X Z + Z B ) i  

for a small vortex element of length As and circulation per unit length r. The induced 
velocity of a vortex element decays rapidly like l/z* at large spanwise distances (2) 

from the origin, and like l/z2 for large streamwise distances (2) from the origin. Using 
a more specific example, consider a parallel vortex half a shedding wavelength 
downstream (around 2.5 diameters downstream) from a point of interest near the 
cylinder. In this case, an element of the vortex induces a velocity that is less than 1 % 
of its value for the case when z = 0, when the element is greater than 11 D away in 
the spanwise direction. The above considerations suggest that the dynamics of 
vortex shedding at  some spanwise position are influenced in a direct fashion mainly 
by the local distribution of wake vorticity, in a region spanning typically 10 
diameters to either side of the position of interest. 
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